

Heaters power sizing and AMS activation sequence

M.Capell; M.Cova; C.Vettore

Why do we need heaters?

- To keep AMS above survival conditions during transfer from STS to ISS
- To warm up whatever needs to be warmed up during cold conditions to keep the temperature higher than the minimum operative/non operative limit
- 3. To activate sequentially AMS after a period of outage of power (e.g. de-freeze fluidic parts before restoring operative conditions)

Freezing could take place

- Transfer phase to the ISS
- Power outage during the nominal operating phase
- Cold environment during nominal operation

De-freezing is needed

- Ammonia freezing (in the heat pipes and in the LHP) is not a safety issue.
- But the start-up of a heat pipe from the frozen state may be a problem if heat input is concentrated in small portion of the pipe
 - So we need to de-freeze Zenith radiators before operating LHP (DE-FROST HEATERS on ZENITH RAD) : T>T_{melting}(NH₃)
 - We need to de-freeze Tracker radiators before starting operating the Tracker loop (DE-FROST HEATERS on TRACKER RAD/CONDENSER):
 - $T>T_{melting}(CO_2)$ => Q TBC by TTCS detailed analysis

Heater management

- Heaters are controlled thermostatically
- 12 pairs of heaters line are available from PDS
- Heaters can be en/disabled at PDS level to manage the total load to be less than 2KW
 - One of the heater line could be disabled when we decide to turn on the corresponding equipment
- Each of the heater line may even form a "bus" with multiple thermostats/heater circuit
- Individual thermostat status (ON/OFF) unknown

AMS 02 -Thermal Control System Design

AMS-02 Thermal CDR

Milano-Italy Carlo Gavazzi Space

10-11 March 2004

AMS 02 -Thermal Control System Design

Output lines	Description	Power A side [W]	Power B side [W]
1	Ram Tracker Radiator/Condenser	150	150
2	Ram main radiator	350	350
3	E-crate+Lower HV bricks	10+60	10+60
4	Wake Tracker Radiator/Condenser	150	150
5	Wake main radiator	350	350
6	Zenith radiator (all 4 quarters)	100x4	100x4
7	Cryocoolers	50	50
8	Cryocoolers	50	50
9	Cryocoolers	50	50
10	Cryocoolers	50	50
11	TRD Gas Box+CAB	69+40	69+40
12	TTCB primary and secondary	50x2	50x2
	TOT	1879	1879

Heater bus arrangement example for TTCB-P and –S boxes

How do we e/disable heaters?

- We can e/disable heaters according to the associated electronics and /or radiator temperature
- We know the temperature of the electronics by means of the GTSN (= Global Temp Sensor Net) based on Dallas Temperature Sensors (DTS) and of the Zenith/Tracker radiators by means of PT100 (or PT1000)
 - DTS readout is done by USCM in J crate
 - Zenith rad. PT100 readout by CCEB
 - Tracker rad. PT100 readout by TT crate

PDS Heaters location 1/3

PDS Heaters location 2/3

PDS Heaters location 3/3

Milano-Italy Carlo Gavazzi Space

CAB Heaters location

Zenith radiators De-frost Heaters location

OHB PROPOSAL

Tracker rad. Heaters location

 Heaters on the radiator back (additional heaters on the condensers not needed)

Main rad. Heaters location

Remark: The heaters can not be placed underneath the boxes

E-crates Heaters location

 Unlike the boxes on the main radiators heaters are located directly on

the E-crate

HV bricks

- Ecal and RICH HV bricks heaters location to be defined with dedicated detailed analysis
- First iteration: heaters on outer sides

EHV bricks Heaters location (1st iteration)

 Unlike the boxes on the main radiators heaters are located directly on the HV bricks.

heaters

RHV bricks Heaters location (2-0-2-0) 1st iteration

 Unlike the boxes on the main radiators heaters are located directly on

the HV bricks.

Cryo body heaters (substitution heaters)

- These heaters are located on the LHP evaporator
- Main functions:
 - Support the nominal cryo-cooler operation in order to avoid freezing on the zenith radiators under extreme cold conditions
 - Start-up the LHP operations and drive the temperature to the CRYO minimum switch-on temperature

Why do we need heaters?

To keep AMS above survival conditions during transfer from STS to ISS

- 2. To warm up whatever needs to be warmed up during cold conditions to keep the temperature higher than the minimum operative/non operative limit
- 3. To activate sequentially AMS after a period of outage of power (e.g. de-freeze fluidic parts before restoring operative conditions)

AMS/02 transfer preliminary results

- 1. AMS in the STS docked at the ISS
- 2. AMS in hand-off position
- 3. AMS on the ISS truss

Selected Case

Beta angle	Yaw	Pitch	Roll
+25°	0°	+20°	0°

COLDEST CASE DURING THE HANDOFF

The environment is the worst cold, characterized by:

- Altitude= 270 Nautical miles
- Albedo=20%
- Earth temperature=245.5K
- Solar flux=1300 W/m²

1. AMS in the STS

1. AMS in the STS

Power dissipation

CCEB has been considered ON = 80W

- / (1111)		
input feed	APCU	
max power	2000W	
PDS active bus	В	
PDS	204W	
Nominal users	Cryocooler	480W @ 120V (4A)
	J-CRATE	50W @ 28V (1,8A)
/	CAB	30W @ 28V (1A)
POWER HE. AVAILAE		1156,0W
	TRD Gas Box	69W
	Crates RAM radiator	350W
	Crates WAKE radiator	350W
	TTCS boxes	100 W
	HV bricks	60 W
	E crate	10 W
	Tot	939 W

2. AMS in the HAND-OFF position

- •The precise set of time- dependent positions of AMS during the transfer phase from STS to ISS is not available yet
- •The only available information is the intermediate position, when both STS and ISS robotic arms will be attached to AMS
- This is a position where AMS could stay for
 - 1 orbit w/o power
 - 1 orbit with power from ISS arm

AMS 02 -Thermal Control System Design

2. AMS in the HAND-OFF position

- 2a). One orbit with AMS completely unpowered
- 2b). One orbit with the following power applied

input feed	PVGF 1	
max power	2100W	
PDS active bus	А	
PDS	204W	
Nominal users	Cryocooler Heaters	200W @ 120V (0,53Ax4)
	Zenith radiator	4 x 50 W
	J-CRATE	100W @ 28V (3,57AX2)
POWER HE AVAILAI		1316W
	TRD Gas Box	69W
	Crates RAM radiator	350W
	Crates WAKE radiator	350W
	TTCS boxes	100 W
	CAB	40W
	HV bricks	60 W
	TIT SHORE	
	E crate	10 W

CCEB has been considered ON = 80W

AMS 02 -Thermal Control System Design

NOT

ENOUGH

3. AMS on the ISS

input feed MAIN max power 2100W	
max nower 2100W	
max power 2100W	
PDS active bus A	
PDS 204W	
Cryocooler 200M @ 120M (0.524 M)) 52 A v 4 \
Nominal users Heaters 200W @ 120V (0,53Ax4)	J,53AX4)
Zenith radiator 4 x 50 W	· —
J-CRATE 100W @ 28V (3,57AX2)	,57AX2)
POWER HEATERS AVAILABLE 1316W	
TRD Gas Box 69W	
Crates RAM 350W radiator	
Crates WAKE radiator 350W	
TTCS boxes 100 W	
CAB 40W	
HV bricks 60 W	
E crate 10 W	
Tot 979 W	

(same as before)

CCEB has

considered

ON = 80W

been

Transfer Analysis Results

AMS 02 -Thermal Control System Design

AMS 02 -Thermal Control System Design

Carlo Gavazzi Space

AMS 02 -Thermal Control System Design

AMS 02 -Thermal Control System Design

AMS-02 Thermal CDR

Milano-Italy Carlo Gavazzi Space

Why do we need heaters?

- To keep AMS above survival conditions during transfer from STS to ISS
- 2. To warm up whatever needs to be warmed up during cold conditions to keep the temperature higher than the minimum operative/non operative limit
- 3. To activate sequentially AMS after a period of outage of power (e.g. de-freeze fluidic parts before restoring operative conditions)

AMS is operating under extreme cold case:

Item	Power (W)	Calculated by	Orbital case (β, YPR)
TRD Gas Box	69	LMSO	0 –15 +15 –15
HV bricks	60W (TBC)	CGS	
Cryocoolers	50 each = 200W	ОНВ	+75 –15 +15 +15
RICH	TBD (depending on ongoing tests)	CGS	TBD
TTCB P or S	50W + 50W	Proposed by CGS	
TOTAL	429W		

Why do we need heaters?

- To keep AMS above survival conditions during transfer from STS to ISS
- 2. To warm up whatever needs to be warmed up during cold conditions to keep the temperature higher than the minimum operative/non operative limit
- 3. To activate sequentially AMS after a period of outage of power (e.g. de-freeze fluidic parts before restoring operative conditions)

AMS-02 re-activation after Power outage

Extreme cold case for WAKE(*)

Beta angle	Yaw	Pitch	Roll
+75°	-15°	-20°	+15°

The environment is characterized by:

- •Altitude= 270 Nautical miles
- •Albedo=20%
- •Earth temperature=245.5K
- •Solar flux=1300 W/m²

(*): PDS radiator

Step sequence

- AMS is operating
- 2. AMS is suddenly shut down
- 3. FIRST TASK: define how long we can remain un-powered?
- 4. As soon as one of the sub-detectors/sub-system is going under the minimum storage temperature we have to restore power to make the activation sequence start. NO TEMPERATURE MONITORING AT ALL.
- 5. PDS minimum switch-on conditions have to be restored
- 6. PDS HEATERS ON (230W)
- As soon as T=-25°C is reached at PDS TRP, PDS is turned ON and PDS heaters are switched OFF by a thermal interlock device (TBD)
- STILL NO TEMPERATURE MONITORING AT ALL

Step sequence

- 9. If PDS is ON we can turn ON all the heaters we need: which ones?
 - ✓ MAIN RADIATORS
 - ✓ CAB + TRDGB
 - ✓ TTCB
 - ✓ HV BRICKS + E-CRATE
- 10. We can NOT turn ON heaters on:
 - ✓ CRYO-BODY ----- zenith radiators could be frozen
- 11. We have both the choices (ON/OFF) for the heaters on :
 - ✓ ZENITH RADIATORS
 - ✓ TRACKER RADIATORS

- 12. Finally thanks to the heaters on the main wake radiators J+JPD boxes reach their minimum switch-on temperature and the JPD can be powered up. This is done controlling the power input line from PDS in a thermostatic way.
- 13. As soon as J-crate is operating we can start (via JMDC) to monitor temperatures via **GTSN**
- 14. DTS MONITORING AVAILABLE
- 15. LOW TEMPERATURE MONITORING (zenith and tracker radiators) DONE IN CCEB AND TT CRATE NOT AVAILABLE
- 16. CCEB and TT Crate ON as soon as they reach switch on temperature
- 17. Readout of zenith and tracker temperature available
- Unfrozen heaters ON on zenith/tracker
- 19. Substitution heaters ON on cryos when zenith is unfrozen

- 20. LHP starts working
- 21. Cryo reach minimum switch on
- 22. Cryocoolers ON

AMS 02 –Thermal Control System Design System Design \mathbf{PDS} switch on temp = -20° C

AMS-02 Thermal CDR

Milano-Italy Carlo Gavazzi Space

10-11 March 2004

Crates on RAM radiator

	@-15°C	ON	
U1	18 hr 40min	28 hr 47min	
UPD1	28 hr 47min		

	@-15°C	ON	
T1	14 hr 38min	14 hr 38min	
TPD1	8 hr 8min	14111 30111111	

	@-15°C	ON	
T4	16 hr 18min		
S2	17 hr 37min	17 hr 37min	
TSPD1	16 hr 18min		
SHV2	6 hr 27 min		

RAM WAKE

CAB

Conclusions

- A preliminary heater power sizing has been performed at system level
- Confirmation shall be provided by subsystem according to their detailed thermal analysis
- Power budget has to be checked